
In oder Aus
Modern Improvements Upon and Applications of the Bloom Filter

Ethan Madison Zachary Zipper

February 19, 2019

Abstract
Bloom filters are data structures used to determine set membership

of elements, with applications from string matching to networking and
security problems. These structures are favored because of their reduced
memory consumption and fast wallclock and asymptotic time bounds.

Generally, Bloom filters maintain constant membership query time,
making them very fast in their niche. However, they are limited in their
lack of a removal operation, as well as by their probabilistic nature. In
this paper, we discuss various iterations of and alternatives to the generic
Bloom filter that have been researched and implemented to overcome their
inherent limitations.

Bloom filters, especially when used in conjunction with other data
structures, are still powerful and efficient data structures; we further
discuss their use in industy and research to optimize resource utilization.

Introduction to Bloom filters
A Bloom filter is a probabilistic data structure used to test set membership queries
in constant time. Queries may return false positives, but never a false negative
(thus classifying them as a false-biased Monte Carlo algorithm). Standard Bloom
filters include insert and set-membership query operations, and lack element
removal, iteration, and other features common in binary search trees, hash tables,
or more common data structures that can be used similarly.

Construction of a standard Bloom filter
A Bloom filter represents a set of n items, and consists of h unique hash functions
and an array of m bits. To add an element to the Bloom filter, compute its hash
with each of the h functions and set the bit at each index. (If the bit has been
set previously, keep it set.) To query an element, compute its hashes and return
“true” if all h bits are set; return false otherwise. Figure 1 demonstrates a query
operation.

An element f not in the set could exist such that all h of its corresponding
bits have been set by other elements. Querying f would return “true”: a false

1



positive. A query will never mistakenly report that an element is not a member
of the set when it actually is—in other words, there are no false negatives.

Figure 1: An example Bloom filter storing the set {x, y, z} with h = 3 hash
functions. x, y, and z are each mapped by three unique hash functions to three
bits. w is queried by checking the three bits that it hashes to. Since one of w’s
corresponding bits is unset, the query will return “false.”

False positives
The false positive rate of Bloom filters can be estimated [1] using

FPR =
(

1−
(

1− 1
m

)hn
)h

≈
(

1− e− hn
m

)h

, (1)

where m is the size of the Bloom filter, h is the number of hash functions,
and n is the number of elements inserted. The approximate form is graphed in
Figure 2.

To fix the false positive rate at FPR, the optimal number of hash functions
to use [2] is

h = log2

(
1

FPR

)
. (2)

Example use case
Bloom filters are often used to reduce memory or storage requirements of set
membership data structures. An example problem in which Bloom filters could
be used is browser vendors protecting users from malicious websites: while
browser vendors could ship a list of known malicious URLs, shipping the full list
would require excessively large network transaction and storage space. Instead,
the browser vendor could include in the browser package a Bloom filter containing
that list, and browsers could query the local Bloom filter quickly before loading
any webpage. If the query returns “true”, then the webpage can be checked

2



Figure 2: A plot of Equation 1: false positive rate vs. n
m , or the number of

elements per bit of the Bloom filter, when h = 5. Note that Bloom filter false
positive rates are ideally at most .02, where the rate of change is approximately
0—i.e., the first “few” (relative to m) elements inserted negligibly affect the false
positive rate.

3



via the Internet against the exact list.1 If the query returns “false”, then the
webpage is not on the list—a query for an element actually on the list will never
return “false”.

Theoretic advantages
The primary advantage of Bloom filters is how they markedly beat other data
structures used for set membership queries in terms of memory overhead. Naive
and deterministic implementations of set membership data structures (including
binary search trees and hash tables) generally have to store the entirety of the
elements that they represent. A significant improvement, Bloom filters represent
an element with one bit per h hash functions. (Typically, fewer than 10 bits are
required to represent an element in a Bloom filter [5].) Furthermore, the number
of elements in the filter does not need to correlate with the number of bits (or
the size of the array) used to store that element.

There are some extensions to the common Bloom filter that make this
advantage even more extreme (notably the Fuzzy-Folded Bloom filter, which can
support ~1.9 times the elements of a standard Bloom filter while maintaining
the same false positive rate and a constant time complexity in all operations).

A secondary advantage of Bloom filters is their ability to insert and query
elements in constant time. Binary search trees can do neither in constant time.
Hash tables can often only query elements in amortized constant time, and
generally have a linear worst case for insertion. The latencies of Bloom filter
operations are solely dependent on the number and complexities of the hash
functions it employs.

Because of Bloom filters’ ability to quickly process elements with low space
cost, they are particularly useful in problems that involve data streams [6] (or
massive sets of elements with no defined upper bounds on size). For example, a
massive hash table that is used to test set membership will eventually fill up
and break when a boundless number of elements are inserted. While the load
factor of a Bloom filter in the same scenario may become dangerously high, the
core functionality of the data structure will always remain intact, even when
inserting an extremely large number of elements.

Limitations
The probabilistic nature of Bloom filters may make them unsuitable for certain
tasks—though that can be mitigated by choosing an appropriate size of the bit
array and number of hash functions to achieve sufficiently low false positive
rates. By Equation 1, one can increase the size m and manipulate (depending
on n

m ) the number of hash functions h to decrease the false positive rate to an
acceptable percentage. To eliminate false positives, the Bloom filter can be used
as a preliminary check to eliminate negatives before checking against the exact
list. (This is faster than checking everything against the exact list, since Bloom

1In fact, this is how Google Chrome protects users from malicious sites. As of 2010, the
full list contained ~1 million websites, stored in an only 18 Mb Bloom filter [3] [4].

4



filter queries are in constant time and Bloom filters are small enough to fit in
faster, limited-quantity memory (e.g., cache).)

The inability to remove elements from a Bloom filter makes the structure
unfit for highly dynamic and volatile sets, where the membership of elements
changes rapidly. (Even re-inserting elements into a new Bloom filter doesn’t work,
since a Bloom filter cannot efficiently and precisely report the entire set; the
hashing of elements and subsequent setting of bits is an irreversible operation.)
However, there are several extensions on the common Bloom filter which add
removal support—these will be discussed in the next section.

Developments
In this section, we will discuss a few iterative improvements on the standard
Bloom filter, as well as the dynamic Fuzzy-folded Bloom filter and the “practi-
cally better” Cuckoo filter. These improvements include addition of a removal
operation, superior space complexity, and better hardware interaction in the
interest of practicality. While all of these solve the same general sorts of problems,
one may be better than another for specific use cases. Table 1 compares several
properties of the discussed filters.

Counting Bloom filter
The most primitive Bloom filter iteration supporting element removal is the
Counting Bloom filter. In this variation, each bucket or bit is replaced by a
number of bits (usually four), which serve as a counter. If an inserted element
hashes to an index, that index is incremented. If an element is removed, then
all the counters it hashes to are decremented. When querying an element, the
query returns “true” if all the counters it hashes to are greater than 0; the query
returns false otherwise. Disadvantages of this variation relative to the standard
Bloom filter include the possibility of bit overflow (in the counters) and higher
memory overhead (as it requires storing several bits for each array index instead
of only one).

Blocked Bloom filter
Blocked Bloom filters (like standard Bloom filters) do not support removal.
However, they are constructed to exhibit high spatial locality by fitting several
smaller Bloom filters individually into cache lines. They guarantee less than two
cache misses on negative queries [7], where standard Bloom filters can have up
to h misses on negative queries. Thus, a Blocked Bloom filter can be a much
more practical data structure than a general Bloom filter. However, for these
improvements, implementing a Blocked Bloom filter requires some knowledge of
the hardware.

5



d-left Counting Bloom filter
d-left Counting Bloom filters use fingerprinting to support removal. They insert
elements by computing their d-left hash to store as a fingerprint—removal is
accomplished simply by deleting the computed fingerprint. In this way, they
are almost more similar to a standard hash table than a bloom filter. This
structure’s space cost is up to twice as expensive as that of a standard Bloom
filter, but it requires half the space of a Counting Bloom filter [5]. The idea of
fingerprinting incorporated in this structure is also a concept fundamental to
Quotient and Cuckoo filters.

Quotient filter
Quotient filters are another extension of the standard Bloom filter which also use
string fingerprinting to support removal. The main difference between Quotient
filters and d-left Counting Bloom filters is how Quotient filters use an extension
on standard hashing called “quotienting” to efficiently hash and reconstruct the
fingerprints of elements. In quotienting, the high and low bits of a computed
fingerprint are partitioned; the low bits are then stored in a bucket indexed by
the high bits. Due to this scheme, collisions generally display high spatial locality
and therefore are hardware-friendly [8]. However, this structure still relies on
linear probing in order to resolve collisions. Thus, Quotient filters cannot give
the same guarantees on asymptotic time complexity as most other Bloom filter
implementations, and its performance suffers at ≥ 75% load [2].

Table 1: Characteristics of Bloom filters, extensions, and variations.
The cache misses column shows the worst-case. In the General
Bloom and the Blocked Bloom designs, h indicates the number of
hash functions used. In the d-Left Counting Bloom construction, d
is the number of partitions in its hash table [2]. As explained in
the following section, f is the number of completed fuzzy-folds.

Filter type Space cost Cache misses per lookup Deletion support
General Bloom 1× h No
Counting Bloom 3× ∼ 4× h Yes
Blocked Bloom 1× 1 No
d-Left Counting Bloom 1.5× ∼ 2× d Yes
Quotient 1× ∼ 1.2× ≥ 1 Yes
Fuzzy-Folded Bloom ∼ 0.5× h(f + 2) No
Cuckoo ≤ 1× 2 Yes

Fuzzy-folded Bloom filter
A Fuzzy-folded Bloom filter describes the continuous compression (“folding”) of
two standard Bloom filters (created from a bipartition of the original array) each

6



of size m
2 bits into a single, compressed filter with m

2 buckets. Exactly half of
the space of the original array is allocated to this compressed Bloom filter, and
the other half is used to support two new Bloom filters each of size m

4 bits [6].
In this, the Fuzzy-folded Bloom filter is a “dynamic” Bloom filter, growing

to maintain a low false positive rate while accommodating further insertions.
The fuzzy-folding operation does not break the invariants of the original filter
(in that it will never introduce the possibility of false negatives), nor does it
increase the false positive rate of the filter [6].

The fuzzy-folding operation overlays bits at the same position in both Bloom
filters and uses fuzzy logic in each bucket of the product array to represent
the compression of these filters. This process (and therefore compressed bit
representation) is non-commutative; it is necessary to logically reconstruct the
ordering to effectively query the filter [6].

Insertion is similar to standard Bloom filter insertion. There are always
two non-compressed Bloom filters in the array. There is also a designated load
threshold, applicable to both non-compressed filters. If the first array has yet to
reach this threshold, h bits are set in the first array (whose indices are determined
by the element’s h hashes). If the first array has reached this threshold, h bits
are set in the second array. If both arrays have reached this threshold, then they
are fuzzy-folded, and two new Bloom filters are allocated with m/

(
22+f

)
bits

each (where f denotes the number of fuzzy-fold operations conducted before this
operation, starting from 0).

Queries operate by first checking the second non-compressed filter (and
returning “true” when a standard Bloom filter would). If there is no match, the
first non-compressed filter is then checked. If there is again no match, then the
filters are sequentially queried from most recently to least recently compressed.
Therefore, in the worst case, the time complexity of queries is linear in terms
of the number of fuzzy-folds performed. Also, in all cases, the speed of queries
suffers drastically compared to that of a standard Bloom filter when the size of
the compressed arrays becomes sufficiently small [6].

The most notable advantage of Fuzzy-folded Bloom filters is how they can
accommodate roughly 1.9 times the elements of a general, space-optimized Bloom
filter while maintaining the same false positive rate [6]. In practice, this is a
desirable trade-off, considering linear query complexity in terms of number of
fuzzy-folds is not a significant limitation, or even comparable to linear in terms
of inserted elements.

Iterative Patterns
Bloom filter evolutions are built with practicality in mind: due to the real-
world performance boost from cache optimization, many of these filters are
constructed for high spatial locality. Likewise, many datasets are volatile, and
so fingerprinting is commonly used to let a Bloom filter variant support removal
without introducing unacceptable space overhead.

7



Cuckoo Filter
Cuckoo filters use many of the same paradigms and ideas of Bloom filters, fill
the same niche (of performing highly space and time efficient set membership
queries with no false negatives), yet approach a few key concepts in ways that
differentiate them from Bloom filters.

Figure 3: An illustration of the Cuckoo hashing technique used by Cuckoo
filters. Each element has two possible buckets. Inserting into an occupied bucket
displaces the occupying element into its alternate bucket. E.g., inserting an
element that first hashes to where C is would cause the new element to displace
C to C’s alternate bucket. Inserting an element that first hashes to where A
is would displace A into the bucket B currently occupies, displacing B into its
empty alternate bucket. Inserting an element that first hashes to the bucket W
would cause an infinite loop since W and H hash to the same two buckets.3

Notably, Cuckoo filters support element removal. They accomplish this by
using a fingerprinting scheme similar to that seen in d-left Counting Bloom
filters and Quotient filters, where deleting an element amounts to deleting its
fingerprint. Specifically, removing an element from a Cuckoo filter is accomplished
by checking both of the element’s possible buckets and deleting the fingerprint if
it exists in either [2].

A Cuckoo filter is also more capable of taking advantage of its allocated space.
Because of Cuckoo filters’ insertion scheme (illustrated in Figure 3), which sets
a fingerprint in only one (compared to h) bucket per insertion and (in some
implementations) allows buckets to contain multiple fingerprints, a load factor
of 95% without a marked increase in false positives is very achievable [2].

The final primary advantage of Cuckoo filters is in their simple design and
construction. Compared to more complicated variations on Bloom filters that
reduce time and space complexity at comparable margins, such as Blocked Bloom

3Original figure by Ramus Pagh, via Wikipedia, under a Creative Commons License (CC
BY-SA 3.0). Figure has been rotated.

8

https://en.wikipedia.org/wiki/Cuckoo_hashing#/media/File:Cuckoo.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en


filters and Golomb-Compressed Sequences [2], the concepts and implementation
details behind Cuckoo filters are relatively simple.

On the other hand, Cuckoo filter insertion is arguably worse than that of
a standard Bloom filter. The process of insertion has the same worst case
as general Cuckoo hashing, where all buckets for the hashed fingerprint are
occupied, leading to a chain reaction of displacements throughout the entire
table. Nevertheless, Cuckoo filters still maintain amortized O(1) insertion [2].

Cuckoo filters also have an upper bound on the number of times one fingerprint
can be inserted: if the Cuckoo filter has buckets of size b, then elements with
the same fingerprint can be inserted at most 2b times [2]. Disabling the removal
operation can overcome this limitation, but removal is a sought-after feature in
this niche.

To maintain an acceptable false-positive rate, fingerprint size must scale with
the size of the filter (or its number of buckets). Nevertheless, this is generally
acceptable, as Cuckoo filters are more space efficient than the standard Bloom
filter at low false positive rates (~3%) [2].

Bloom Filters in Practice
We give an in-depth discussion of a new de novo genome assembler, ABySS 2.0,
which utilizes Bloom filters to trivialize memory requirements without sacrificing
speed or accuracy, and increases DNA sequencing throughput. This and further
advancements could revolutionize preventative healthcare, and affect the lives of
many. We continue to list many of the ways Bloom filters are used in everyday
life to make efficient otherwise difficult procedures.

De novo genome assembly
Genomics research—the field of characterizing genomes to better understand
similarities and differences among species, or even individuals—has seen much de-
velopment in the past decade in part thanks to growing and planned personalized
medicine initiatives.4 During this time, the DNA sequence throughput of the
industry’s best instruments has constantly increased [1]. In particular, sequence
assembly, which refers to aligning and merging fragments read or copied from a
longer DNA sequence in order to reconstruct the original sequence,5 has seen

4“Personalized medicine” is a medical model which tailors medical decisions, practices,
interventions and/or product usage to the individual patient’s predicted risks. Because of
this focus on the individual, and given the large part genetics play in individual health, the
field depends on sequencing genomes en masse. The spread of personalized medicine may be
a major boon to preventative healthcare, especially as sequencing becomes faster and more
affordable.

5DNA sequencing technology, biological or synthetic, cannot read whole genomes (on the
order of 7 billion basepairs split among 23 pairs of chromosomes in humans) in one pass.
Instead, genome sequencing works by copying or listing the bases in a short (20–30000 bases)
“reads” and then combining them. De novo sequence assembly, which constructs genomes
without a backbone or template, combines these reads using overlaps as indicators of originally
adjacent sequences. Figure 4 illustrates the de novo assembly process.

9



drastic reductions in both time and spatial requirements with the incorporation
of Bloom filters and related algorithms in assemblers.

Figure 4: Sample sequence showing how a sequence assembler would take short
fragments (pink, red, blue, and green) and match by overlaps to recreate the
black sequence. Notice that the pink fragment could be in one of two positions
in the sequence.7

The genome assembler ABySS is example of the efficiency of Bloom filters in
de novo genome assembly: whereas ABySS 1.9 (which didn’t use a Bloom filter)
could assemble the human genome in 14 h using a whopping 418 GB of memory
(across many machines), ABySS 2.0 can, using the same parameters, assemble
the human genome in 20 h with a mere 34 GB8 [1]. ABySS 2.0 achieves this
performance increase by consolidating its usage to a single machine (eliminating
the need for messaging) and instead represents a De Bruijn graph using a Bloom
filter. In this context, a De Bruijn graph stores all 4k possible length-k sequences
(called “k-mers”, which are length k portions of the longer read) made up of
symbols (bases) from {A, C, G, T} in the vertices

V = {(A, . . . , A, A), (A, . . . , A, C), . . . , (A, . . . , A, T), (A, . . . , C, A), . . . , (T, . . . , T, T)}

and all four possible “successor” sequences (where the first base is removed, the
rest shifted left, and another base is appended) are represented in the edges

E = {((v1, v2, . . . , vn), (v2, . . . , vn, si) : i = 1, . . . , m)} .

7Figure (presented without modification) by “Luongdl”, via Wikipedia, under a Creative
Commons License (CC BY-SA 3.0).

8The absolute time for sequencing doesn’t matter: this is about throughput. This is an order
of magnitude increase in throughput given the same resources, which matters for real-world
applications. Roughly 10 times the number of patients can have their DNA sequenced using
this sort of algorithm.

10Figure (presented without modification) from [1], under a Creative Commons License
(Attribution 4.0 International license)

10

https://en.wikipedia.org/wiki/Sequence_assembly#/media/File:Seqassemble.png
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 5: An overview of the ABySS 2.0 assembly algorithm. A: A read is split
into k-mers and loaded into the Bloom filter by computing the hash of each
k-mer sequence and setting the corresponding bit in the Bloom filter. B: A
path through the De Bruijn graph is traversed by querying all possible successor
k-mers and advancing to those found. C: ABySS 2.0 trims dead-end branches
and continues only along those at least a fixed length. The term “solid read”
denotes a confirmed sequence. Edges are discovered in both directions: both
predecssors and succesors are searched for [1].10

11



As described in Figure 5, ABySS 2.0 represents the vertices of the De Bruijn
graph with a Bloom filter by setting bits corresponding to the vertices (k-mers).
These k-mers are the length-k sequences of a short read, so in this way the
Bloom filter contains the entire read. With all reads stored in the Bloom filter,
ABySS 2.0 combines them to reconstruct the original sequence. The algorithm
repeatedly queries the Bloom filter to discover De Bruijn graph edges (which
lead to predecessor or successor k-mers). Since k-mers are relatively short and
are only part of the read, this process may lead to representation of false edges
in the graph; fortunately, using look-ahead mechanisms, these branches are
trimmed if they do not continue for more than k nodes. (This look-ahead
mechanism increases graph traversal cost, but eliminates the need for additional
data structures.) As reads extend and more likely represent a correct path in the
De Bruijn graph, they are branded “solid reads” and considered to be part of the
original sequence. Through this process, the entire genome may be reconstructed
from short reads with high accuracy.11

Table 2 shows how ABySS 2.0 compares to other genome assembly algorithms
in resource consumption. Notably, the tools which efficiently represent the De
Bruijn graph (ABySS 2.0, MEGAHIT, Minia, and SGA) require much less
memory than those that do not. BCALM12, while extremely resource light,
sacrifices sequence contiguity compared to the rest of of the listed assemblers.
ABySS 2.0, using Bloom filters, achieves a marked improvement over ABySS 1.9
and the rest of the pack in efficiency, while achieving contiguity results on par
with DISCOVARdenovo and ABySS 1.9. Note that Minia also uses Bloom filters,
and ABySS 2.0 is largely based on Minia, with three novel features: (i) the use of
solid reads, (ii) a look-ahead mechanism to eliminate false positives (as opposed
to a seperate data structure), and (iii) a new hashing algorithm designed for
DNA/RNA sequences. The authors of ABySS believe that there is still great
opportunity for improving throughput without sacrificing contiguity—i.e., the
algorithmic ideas of BCALM could be adapted to produce a more contiguous
result [1]. (And perhaps Bloom filters are not the absolute most efficient means
of representing a De Bruijn graph.)

Table 2: Peak memory usage and wallclock runtime with 64 threads
of assemblies of GIAB HG004. Data from [1].

Assembler Memory (GB) Time (h)
ABySS 1.9 418 14
ABySS 2.0 34 20
DISCOVARdenovo 618 26
BCALM 5 9

11The accuracy is “on-par with other assemblers” [1], and need not be perfect; even the bio-
logical process of DNA transcription introduces error. Additionally, DNA has some protections
against error in that many codons encode the same meaning, as well as the fact that much of
the genome has little-to-no known effect.

12BCALM uses a novel method of partitioning the De Bruijn graph to be resource efficient,
and does not use Bloom filters.

12



Assembler Memory (GB) Time (h)
MEGAHIT 197 26
Minia 137 19
SGA 82 65
SOAPdenovo 659 35

Networking
Bloom filters are used in device discovery: if two previously paired devices meet
again under different circumstances, they can skip pairing again (which would
be unnecessary, since they have previously done so). Devices build a Bloom filter
of devices they have paired with, and when attempt to connect with another
device, send the list to the second device. If the second device recognizes one of
its identifiers in the Bloom filter, it responds to the first device that they have
paired previously, which initiates the mutual connection. This process, described
and patented in [9], is used in Qualcomm devices (i.e., many or most cell phones
and other portable devices) for ad-hoc network discovery (e.g., Bluetooth, WiFi
direct, 802.xx wireless LAN).

Making the world go ’round
Facebook [10] uses Bloom filters to represent the social graph for typeahead
search in order to display friends and friends-of-friends of the user’s query. The
Bloom filter uses 16 bits per friend connection (or graph edge).

Yahoo! Mail [11] uses Bloom filters to represent email contact list since the
Bloom filter can fit in browser cache. This obviates the need for round-trip
connections to Yahoo for verifying delivered emails are from contacts.

Tinder [12] [11] uses Bloom filters to record “right swipes” (accepting a user
as a possible match) in order to remove users from the incoming list. When
eventually the list is refreshed for new users to swipe on, those previously right
swiped on will be filtered out. Some unseen users are filtered out by this process,
but, as the saying goes, there are plenty of fish in the sea.

URL shorteners [11] employ Bloom filters to generate unique URLs: if a
shortened URL has been previously used, it exists in the Bloom filter. Thus, by
querying the Bloom filter with different shortened URLs until receiving a “false”
response, the service can ensure unique URLs.

YouTube uses Bloom filters [11] to ensure recommended videos are not in the
user’s watch history, in addition to the algorithms that optimize for relevance
metrics, to feed users new and interesting content.

Conclusion
The general Bloom filter is a powerful data structure thanks to its simplicity
and its time and memory efficiency. Guaranteed constant time insert and

13



query operations are rare among data structures, and often worth the trade-off
of false positives in set membership problems. A more serious limitation for
particular problems is the lack of a removal operation, which is overcome by
various evolutions of the Bloom filter, and the Cuckoo filter. For many problems,
one of these evolutions or alternatives may be better suited depending on the
circumstantial resources and constraints.

Bloom filters, though simple and often hidden behind-the-scenes, have a pro-
found and increasing effect on the modern world. This data structure makes effi-
cient dating, entertainment, and networking—both social and digital—possible,
as well as leading healthcare to be able to personalize treatment to the individual.

14



References
[1] S. D. Jackman, “ABySS 2.0: Resource-efficient assembly of large genomes
using a bloom filter,” Genome Research, vol. 27, no. 5, pp. 768–777, 2017.
[2] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies - CoNEXT
14, pp. 75–88, Dec 2014.
[3] A. Yakunin, “Nice bloom filter application,” Alex Yakunin’s blog. Mar-2010.
[4] S. Hess, “Issue 10896048: Transition safe browsing from bloom filter to prefix
set. - code review,” Appspot.com. Jan-2012.
[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An
improved construction for counting bloom filters,” Lecture Notes in Computer
Science Algorithms – ESA 2006, pp. 684–695, 2006.
[6] A. Singh, S. Garg, K. Kaur, S. Batra, N. Kumar, and K.-K. R. Choo, “Fuzzy-
folded bloom filter-as-a-service for big data storage on cloud,” IEEE Transactions
on Industrial Informatics, pp. 1–1, Jun 2018.
[7] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient bloom
filters,” Journal of Experimental Algorithmics, vol. 14, p. 4.4, Dec 2009.
[8] M. A. Bender, “Don’t thrash,” Proceedings of the VLDB Endowment, vol. 5,
no. 11, pp. 1627–1637, Jul 2012.
[9] W. Haddad, M. Vandereen, G. Tsirtsis, and V. D. Park, “Bloom filter based
device discovery.” Nov-2015.
[10] K. Adams, “Typehead search tech talk,” Facebook.com. Facebook Engineer-
ing, Jan-2010.
[11] “What are the best applications of bloom filters? - quora_2014,” Quora.com.
Jan-2014.
[12] G. Sen, “Designing tinder: System design interview question,” YouTube.
Jul-2018.

15


	Introduction to Bloom filters
	Construction of a standard Bloom filter
	False positives
	Example use case
	Theoretic advantages
	Limitations

	Developments
	Counting Bloom filter
	Blocked Bloom filter
	d-left Counting Bloom filter
	Quotient filter
	Fuzzy-folded Bloom filter
	Iterative Patterns
	Cuckoo Filter

	Bloom Filters in Practice
	De novo genome assembly
	Networking
	Making the world go 'round

	Conclusion
	References

